Electronic transport in DNA.

نویسندگان

  • Daphne Klotsa
  • Rudolf A Römer
  • Matthew S Turner
چکیده

We study the electronic properties of DNA by way of a tight-binding model applied to four particular DNA sequences. The charge transfer properties are presented in terms of localization lengths (crudely speaking, the length over which electrons travel). Various types of disorder, including random potentials, are employed to account for different real environments. We have performed calculations on poly(dG)-poly(dC), telomeric-DNA, random-ATGC DNA, and lambda-DNA. We find that random and lambda-DNA have localization lengths allowing for electron motion among a few dozen basepairs only. A novel enhancement of localization lengths is observed at particular energies for an increasing binary backbone disorder. We comment on the possible biological relevance of sequence-dependent charge transfer in DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic transport through dsDNA based junction: a Fibonacci model

A numerical study is presented to investigate the electronic transport properties through a synthetic DNA molecule based on a quasiperiodic arrangement of its constituent nucleotides. Using a generalized Green's function technique, the electronic conduction through the poly(GACT)-poly(CTGA) DNA molecule in a metal/DNA/metal model structure has been studied. Making use of a renormalization schem...

متن کامل

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...

متن کامل

Electronic transport in Si and Au monoatomic chains considering strongly correlation effect, a first principle study

We have investigated structure and electronic properties of Au and Si liner chains using the firstprinciplesplane wave pseudopotential method. The transport properties and conductance of these twoliner chains are studied using Landauer approaches based on density functional theory (DFT). Weobtain density of states and band gap using Kohn-Sham and Wannier functions as well as quantumconductivity...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

First principle study of structural and electronic transport properties for electrically doped zigzag single wall GaAs nanotubes

Emerging trend in semiconductor nanotechnology motivates to design various crystalline nanotubes. The structural and electronic transport properties of single walled zigzag Gallium Arsenide nanotubes have been investigated using Density Functional Theory (DFT) and Non-Equilibrium Green’s Function (NEGF) based First Principle formalisms. Structural stability and enhanced electronic transmission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2005